Load Balancing Using Collaborative Software Agents

Dennis R. Ellis

TRW Systems & Information Technology Group

Technology Insertion Studies and Analysis (TISA) is an applied research project at the Joint National Test Facility (JNTF) in Colorado Springs. The objectives of the efforts undertaken by TISA are to apply leading edge information technology to the JNTF and to develop long-term, in-house expertise in contemporary modeling and simulation technologies. Current efforts are focused in four areas: distributed computing, web technologies, modeling of human and system behavior, and strategic planning. Rapid advances in these information technology areas challenge virtually all high-tech organizations. The purpose of this paper is to discuss the results of one area of our research in distributed computing which is being applied to simulation and wargaming.

Historically, balancing the processing load of a multi-tasking system has been accomplished at the task, or operating system process, level. Little research has been done in the area of load balancing at the sub-process level. The wargaming environment under development at the JNTF consists of simulations composed of simulation objects executing under the umbrella of a time and task management framework called SPEEDES. Recent research in the area of distribution management algorithms has shown that emerging techniques such as software agents may achieve efficient object and data distribution under a variety of situations, such as those just described. For this research project, the emphasis is on collaborative agents.

Introduction

New wargaming requirements will overload the few processors on which existing simulations have previously executed. To meet these requirements, there is an immediate, urgent need to distribute the simulations over multiple processors, thus improving functional capability, execution efficiency, and scalability.

One method of speeding up simulations is to execute them in parallel; i.e., distribute the simulation across multiple processors. However, parallel processes must be coordinated to guarantee that the outcome is the same as would occur in a conventional sequential simulation. There have been a number of approaches described for performing this coordination 1,2,3. All these approaches require some method of managing simulation time since the placement of the logical processes (LPs) on multiple nodes of a multi-processor system requires that separate logical clocks be created on each node. The various approaches can be broadly classified as either conservative or optimistic. Both focus on the issue of coordinating the multiple logical clocks such that the outcome of the simulation is identical to that from a sequential simulation.

Conservative Time Management algorithms guarantee that no process receives information from any other process that predates the current simulation time of the receiving process.�

Optimistic Time Management algorithms allow processes to act on incomplete information, thus allowing messages to arrive “in the past” of the current simulation time of the receiving process and properly handle any resulting causality errors.�

The logical processes are usually distributed across the available processors at initialization before the simulation is started, using static load balancing techniques. In some circumstances, this is sufficient to achieve a well balanced system. There are times, as discussed below, when this static load balancing is insufficient and may require dynamic re-allocation of logical processes across processors to maintain a balanced load. However, these logical processes are under the control of a time management framework and are not “processes” in the normal sense of the term in the operating system context. This definition of “process” excludes the use of existing load balancing approaches. As such, the wargaming community’s need for an efficient object (logical process, data, event, etc.) management scheme, coupled with the availability of new technologies, presents a technological opportunity that is being addressed here.

The goal of the project is twofold: 1) investigate the applicability of state-of-the-art adaptive distribution algorithms as applied to dynamic load balancing in the wargaming environment of the JNTF; and 2) derive knowledge about successful interaction protocols among autonomous agents and the circumstances in which those protocols work best.

The Need for Load Balancing

Parallel simulation assumes the placement of logical processes on multiple nodes of a multi-processor system. There are a variety of factors that cause this initial placement of logical processes (static load balancing) to become the incorrect configuration:

 - Many Dissimilar Processes (Initialization, Application-specific processing, Human Decision-making)

 - Uncertain Outcomes (Human-in-control, Probabilistic Assessment)

 - Transient Workload (Spike Due to Multiple, Simultaneous User Requests)

 - Variable Data Distribution (Operator ad-hoc Request, Federation Data)

 - Computer Malfunction (Machine Breakdown Requiring Rerouting)

 - Multiple, Complex Goals (No Single “Objective Function” to Optimize)

 - Data is Asynchronous, Incomplete, Uncertain, and Possibly Conflicting

 - Numbers and Types of Simulation Objects Vary Significantly During a Run

It is then necessary to dynamically re-distribute (load balance) the Logical Processes to different nodes depending on the computational load on each node (ie., how “busy” each node is). This processing involves moving waiting processes to idle nodes, thereby processing more “work” faster - resulting in higher speedup. Such re-distribution requires the use of object distribution management (ODM) techniques, aimed at dynamic distribution of objects (processes and their associated data) across processors. Recent research in the area of object distribution algorithms has shown that emerging techniques, such as Software Autonomous Agents, may achieve efficient object distribution under a variety of situations.

Software Agent Basics

There are as many definitions of an “agent” as people developing them. From the point of view of the computer science community, the definition that best fits the our purposes is:

An intelligent agent is considered to be a computer surrogate for a person or process that fulfills a stated need or activity. The surrogate entity provides decision-making capabilities that are similar to the described intentions of a human. This surrogate can be given enough of the persona of a user or the gist of a process to perform a clearly defined or delimited task. An intelligent agent can operate within the confines of a general or precisely represented need and within the boundaries of a given information space.4 (King, 1995. Emphasis mine)

Describing how agents behave operationally can be beneficial in obtaining a better understanding of them5:

Autonomy: Agents operate without direct intervention of humans or others over long periods of time and have some kind of control over their internal state.

Social Ability: Agents interact with other agents (and possibly humans) via some kind of agent communication language.

Reactivity: Agents perceive their environment and respond in a timely fashion to changes that occur in it.

Proactivity: Agents do not simply act in response to their environment, they are able to exhibit goal-directed behavior by taking the initiative.

�

Figure � SEQ Figure * ARABIC �1� - Classes of Agents

For the purposes of this paper, there are four types of agents: Interface, Smart, Collaborative, and Collaborative Learning. Figure 1 shows the relationship among the differing types of agents and the human-like attributes that they can mimic6.

This paper focuses on collaborative agents which emphasize autonomy and cooperation in order to perform their tasks. They may also learn, but this aspect is not currently a major emphasis.

The collaborative agents we employ are sometimes referred to as Strong Agents in that they can:

 Operate without direct intervention

 Have control over their actions and take initiative (be pro-active)

 Interact with other agents, humans, and applications

 Be implemented using concepts generally attributed to humans

 Mentalistic notions (beliefs, desires, intentions, goals, etc)

 Reasoning and learning

 Be implemented using AI knowledge representation (Semantic Nets, Rules, ...)

 Use inference and cognitive skills

 They can be defined as one who acts on behalf of another to cause an effect �

The rationale for developing a collaborative agent system is to “create a system that functions beyond the capabilities of any of its members singularly”. The attributes of this functionality could include such things as: speed, worst-case performance, reliability, adaptability, accuracy, compute power, etc.

There are many advantages to using agents, which led to the decision to investigate the use of agents for solving the load balancing problem. These include:

Solving problems that are too large for a centralized single agent,�

Allowing for interconnecting and interoperation of multiple existing legacy systems,�

Providing solutions to inherently distributed problems, and�

Enhancing modularity, speed, reliability, flexibility, and reusability.

Intelligent agents provide a promising area for unleashing the power of distributed systems and for reducing their complexity. Since the target application (dynamic load balancing) is both distributed and complex, agent technology seems to be a good avenue for attacking the problem. At the same time, studying and applying this technology helps our group achieve the additional goal of “developing long-term, in-house expertise in contemporary modeling and simulation technologies”. This is an important goal since we believe agents will become pervasive within the computer and communications community.

�

Figure � SEQ Figure * ARABIC �2� - Advantages of Agents

To gain the most benefit from the advantages that agents can provide, they must, of course, fit into the existing operating environment and application. This is best accomplished by using a comprehensive agent execution layer, which is integrated with an agent builder or launcher along with agent support class libraries, scripting languages, and an Application Program Interface (API). After conducting a trade study, the execution layer chosen for this application was the Java-based Voyager system by ObjectSpace, Inc.

�

Figure � SEQ Figure * ARABIC �3� - Choosing an Agent Application Layer

Voyager supports both fixed (or stationary) and mobile (or itinerant) agents. This was an important determining factor since one goal of this effort was to examine the complexity and performance of various agent implementations.

Fixed agents: Execute as independent tasks on one processor, but may spawn other tasks to execute on the same or other processors. They remain in a single location throughout the duration of their execution. The type of fixed agent addressed here is referred to as a “functional” agent, in that its domain of expertise is in a functional area as opposed to the interface area.

Mobile agents: Can copy themselves or be moved to execute on more than one processor, or to move about a network infrastructure in order to concentrate processing and use other resources in the most advantageous way or to provide processing flexibility.

How Agents Move

Mobile agents are computational software processes capable of roaming wide area networks (WANs) or local area networks (LANs), interacting with foreign hosts, gathering information, performing duties, and coming back “home”. They may move around the system using one of two methods, depending on how much control the “home” agent desires to maintain over the mobile agent. These two methods are referred to as telesthesia and teleportation and are described in more detail following.

�

Figure � SEQ Figure * ARABIC �4� - How Agents Move

An early agent prototype developed in the course of our studies demonstrated the use of the telesthesia paradigm. Work is currently underway to develop a prototype to demonstrate the teleportation paradigm.

Telesthesia Approach. Our approach was to: 1) create a fixed agent on a “home” node; 2) provide that agent with sufficient knowledge of the desired goals; 3) send the fixed agent to each of the nodes participating in the simulation; 4) have the fixed agent send information regarding the local work load to the “home” node; 5) have the “home” node decide which, if any, processes should be moved; and 6) notify the fixed agent on the overloaded node to move a process to an under-loaded node (as determined by the “home” node).

�

Figure � SEQ Figure * ARABIC �5� - The Telesthesia Approach

Teleportation Approach. Our approach is to: 1) create a mobile agent on a “home” node; 2) provide that agent with sufficient knowledge of the desired goals and an itinerary; 3) send the mobile agent to each of the nodes participating in the simulation according to the itinerary; 4) have the mobile agent collect and store information regarding the local work load; 5) have the mobile agent decide which, if any, process should be moved using the stored work load information; and 6) have the mobile agent move the process to an under-loaded node (as determined using the stored work load information).

A major advantage of the teleportation approach is the reduced communication costs. With a “home” agent receiving all the work load information and making the decisions, there is the potential for a great deal of information flow through the network - leading to reduced bandwidth, long communications latencies, and time-consuming processor loads. With the mobile agent making the decisions and moving the processes among the processors, this network bottleneck is greatly reduced.

A major advantage of the telesthesia approach is that it is much simpler to implement and if the data is sent to the “home” agent for other reasons (such as status monitoring and display), there will be little or no reduction in network traffic. An additional advantage is that the decision-making agent can be assigned to a different processor than those on which the target application is executing, thus reducing computational load on those processors.

Approach to Load Balancing

As can be seen from Figure 5, our architecture is a distributed collaborative agent system which has two layers of abstraction: the first layer consists of a task-specific agent which is “parked” on the processors containing the application, and a second layer which consists of an information-specific agent which collects information from the “parked” agents, makes decisions, issues commands, and displays and archives data.

According to Sycara7, a task-specific agent (the “parked” agent) has the following knowledge: 1) a model of the task domain; 2) procedures on how to perform the task; 3) how to gather the information for the task; 4) information regarding other task-specific or information-specific agents it must coordinate with in order to meet the task goals; 5) protocols that enable coordination with other agents; and 6) strategies for conflict resolution and information fusion. It may also possess some learning mechanisms (e.g., when an agent needs to learn the preferences of its user). Information-specific agents (the “home” agent) know the following: 1) knowledge of the databases that it is associated with; 2) knowledge of how to access the databases; 3) knowledge of how to resolve conflicts and information fusion strategies; and 4) protocols for coordination with other relevant software agents.

The rationale for the architecture is to provide a distributed collection of collaborative agents that can retrieve, filter, and fuse information from distributed, multi-modal sources and assist in decision making.

The “home” agent consists of a decision-making module linked to its beliefs and facts database which decides if and where processes are to be moved, a coordination module to communicate and coordinate information to/from the “parked” agents, and a display module to keep the user informed of the system status.

The time management platform is a time-ordered, event-queue driven Parallel Discrete Event Simulation (PDES) framework. Each processor (node) has an event-queue containing logical processes (LPs) that are scheduled to execute at some time in the future (based on a simulation clock).

The approach taken with this study was:�

Use “parked” agents on each node to examine the work load and send that information to the “home” agent for data fusion and decision making.�

If the node is too “busy” (based on some predetermined criteria) and there is at least one under-utilized node available, the “home” agent will then direct the “parked” agent to examine the local event-queue to determine how many, and how far into the future, LPs are scheduled to be executed.�

Using parametrically-driven rules, the “home” agent will decide if an LP should be moved and, if so, to where.�

The “home” agent then directs the “parked” agent to remove the chosen LP from the event-queue, package it with its data, move it to a different node, and insert it into the destination’s event-queue.

The decision-making rules include:

Is there an under-utilized node available?�

Is there a sufficient number of LPs scheduled on the local node to make the move worthwhile?�

Is the next scheduled LP sufficiently far into the future to move it in time?

The use of intelligent agents to keep a system comprised of multiple nodes has been prototyped and demonstrated with synthetic work loads using the telesthesia approach on our 16-processor Beowolf-class agent testbed.

Agent Integration Testbed

One of the objectives of this effort is to implement and demonstrate a prototype object distribution testbed, integrated with the PDES time management framework on which new simulations at the JNTF are being developed. The testbed allows us to explore a variety of intelligent agent implementations. Some of the issues being examined include, but are not limited to:

Applicability of intelligent agents for application under consideration.

Performance characteristics of various agent implementations.

Ramifications of alternative network configurations.

Monitoring and archiving the agent interactions.

Ease of intelligent agent implementation in the context of the target application.

Effect of varying the load balancing tuning parameters.

As stated earlier, to gain the most benefit from the advantages that agents can provide, they must fit into the existing operating environment and application. The time management framework is implemented in C++ while the agent framework (Voyager) is implemented in Java. This necessitated the development of a C++/Java interface to allow the agent access to the event-queues and data structures of the LPs. This interface has also has been prototyped and demonstrated.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �6� - SPEEDES (C++) (Voyager (Java) Interface

Since this is a proof-of-concept research and development project having the ultimate goal of becoming an operational system, an important aspect of the project is providing a visual method of determining whether the system is behaving as predicted or desired. As mentioned earlier, the architecture provides for retrieving, filtering, and fusing information from distributed, multi-modal sources to assist in this decision making process. The visualization of this data is important for the developer to verify that the system is performing as expected and for the user to gain insights as to how and why the load balancing mechanism is working.

For these reasons, an important aspect of the testbed is the graphical display, written entirely in Java, that provides the user four views of the agent system under study. It provides status updates, visualization of the work loads, and the movements of the agents, as well as a mechanism for dynamically modifying the tuning parameters. The display is divided into four windows: the network communications view, the history view, the system load view, and the tuning parameters dialog.

The network communications window shows on which node the currently active “roaming” agent is located (see “Future Plans” for a description of the “roaming” agent) and visually indicates, using animation, when the agent is moving.

The history window displays a history of the minimum and maximum CPU load. When the two curves are diverging the work loads are becoming more unbalanced and when the two curves converge, the work load is balanced within the constraints imposed on the system.

�

Figure � SEQ Figure * ARABIC �7� - Status Display

The system load window shows the work load on each node participating in the load balancing process. The lower area of each bar graph indicates the time used by the CPU during the last cycle, the middle area of the bar indicates the system overhead during the last cycle, and the upper portion of the bar indicates the idle time of the processor during the last cycle. The horizontal line across all the bars indicates the average CPU time across all the processors. Any bars with a large deviation from the average in the lower area would indicate an under-loaded node, while a large deviation of the upper area from the average would indicate an over-loaded system.

The lower left window provides the user with a means of dynamically adjusting the tuning parameters used in applying the decision-making rules.

Future Plans

Our near-term goal is to use a mobile agent to visit each node and examine the work load. If the node is too “busy” (based on some predetermined criteria), the agent will then examine the event-queue to determine how many, and how far into the future, LPs are scheduled to be executed. Using parametrically-driven rules and whether there is at least one under-utilized node available, the agent will decide if it should remove an LP from the event-queue, package it with its data, move it to a different node, and insert it into the destination’s event-queue.

This method of performing the load balancing task is similar to the one already developed, but all the decision-making is moved to the “task-specific” agent (of which there is only one) which “roams” from node to node performing its task.

A key challenge facing agent system designers are the issues of stability, scalability, and performance. Empirical investigations need to be carried out to establish suitable minimum levels of performance and scalability. Stress testing and exception condition testing must be performed in order to determine their stability.

Applicability of Intelligent Agents to Other Domains

While this effort is aimed at wargaming simulations, collaborative agents are useful in a large number of diverse areas. Some examples of collaborative agents in areas of interest to TRW S&ITG include:

Autonomous Satellites					Data Mining

Telecommunications Network Management			Distributed Sensor Networks

Collaborative Design					Distributed Traffic Control

Digital Libraries						Distributed Information Systems

Summary

Our research has resulted in the development of an integration testbed which can be used to study issues related to collaborative software agents - an important emerging field in the computer science community. Specifically, we have used this testbed to prototype and demonstrate the use of software agents for load balancing parallel discrete event simulation wargame simulations at the Joint National Test Facility. More generally, we have used it to develop domain expertise and experience in the area of software agents, which will be important in the years ahead in helping the DoD to meet its simulation needs.

References

1 Chandy, K.M and Misra, J., “Distributed Simulation: A Case Study in Design and Verification of Distributed Programs”, IEEE Transactions on Software Engineering, SE-5.5, May, 1979, pp. 440-452.

2 Peacock, J.K., Wong, J.W., and Manning E., “Distributed Simulation Using a Network of Processors”, Computer Networks, 3, North Holland Publishers, 1979, pp. 44-56.

3 Reynolds, P.F., “A Spectrum of Options for Parallel Simulation”, Working Paper, 1991.

4 King, J.A., “Intelligent Agents: Bringing Good Things to Life”, AI Expert, February, 1995, pp. 17-19.

5 Majewski, S.D., “Clarifications and Additions for AI: A Modern Approach (agents@sun.com
