Information Extraction to a Knowledge Base
Jeff McCartney

TRW Command, Control, and Intelligence Division

The problem we solved was to semi-automate the process of converting text to an evidence form. This process is called Information Extraction. There are several programs available that perform the task of Information Extraction. The one that we choose was GATE. This product performed all the tasks except for populating the form. The reason it did not was because researchers are still working to perfect this template-filling task. The percentage of accuracy for template filling based on free text is less than 60%, which is not a viable solution. Our goal was to exceed 80%, which corresponds to human ability. We created a module that works with GATE to fill the evidence form. This module allows the analyst to make final decisions on template filling. We also created a module to determine the numerical degree of belief in a particular text. This process is called “hedging”. The hedge words are rated with a belief value between zero and one. The words are tagged within a text and the mean value of the words found is the belief associated with the text. The overall process of getting the text converted to the evidence form required the analyst’s interaction. The approach was to create a front-end to GATE called the Assisted Reporter’s Questions. This user interface automated the execution of GATE modules and allowed tight integration with the evidence form.

Introduction

We set out to discover a method of taking information from text and converting it into an evidence form called the Reporter’s Questions Template. In the process of looking for a way to accomplish this task, we came across a technology called Information Extraction. Information Extraction was exactly what we were looking for. This area is well defined and has been around since the early 1950’s, but only recently has the research area produced applicable products, typically for use within certain niche domains. Once we had discovered the underlying theory, we started researching the actual computer programs available to the public. The number of applications available led to a trade study of these products. The best was chosen and studied more closely. This chosen product was then refined to interact with the evidence form. To have it interact with the form, we created new modules that went beyond the standard packaging of the product. We also added a module that uses hedge words to capture the confidence associated with the information being extracted. Finally, I’ll talk about how the product interacts with the form and the modifications needed for current use of this tool.

Information Extraction

Today we have thousands of text messages stored in databases, scattered everywhere. Information Extraction is designed to help convert these texts into a more usable form for processing by the computer. Information Extraction (IE) is the process of taking words from the body of text and putting them into a template. Basically it is a way to have the computer answer questions using information from a text. The steps (Figure 1) to do IE are: tokenizing, sentence splitting, part of speech tagging, named entity tagging, co-reference, and template filling.

[image: image1.wmf]
Figure 1: The Flow of Information Extraction

 Tokenizing is the process of taking a text and making a distinction between words and spaces. After that has completed, sentence splitting tags the different sentences. Sentence splitting doesn’t just find the punctuation and declare the words between them a sentence. It also differentiates between abbreviations and title punctuation. Next is part-of-speech tagging. This process defines the part-of-speech each word belongs to, i.e. noun, verb, or pronoun. This process takes into account the surrounding words to determine which part of speech the word is. Name entity tagging is used to simplify a specific word into a general category. It makes categories of people, locations, organizations, time, and others. The name entity process uses word lists and rules to define what words go in which groups. Then, the co-reference process attempts to match pronouns within the text to nouns to which they refer. Finally, template filling is the process of matching a field in the template with the desired word or words within the given text.

To give a measure of how accurate the Information Extraction is, the IE community has defined a way to measure the accuracy. They take into account Precision and Recall, which are defined here:

[image: image2.wmf]
where beta is a value between 0 and 1 reflecting the weighting of P vs. R. If beta is set to .5 they are weighted equally. The F-measure is often used in conjunction with Precision and Recall, as a weighted average of the two [1]. This gives a percentage of accuracy. Researchers tested and measured three processes using this system: part of speech tagging, name entity tagging, and template filling. The first two, part of speech and name entity, generally score around 80% - 90%[2]. To compare that to a human, people generally score around 87% on all processes [2]. Template filling, on the other hand, generally scores around 60%[3]. Currently the research focus in Information Extraction is to raise the template filling number to be closer to 90%. The accuracy of these capabilities can be increased if the domain is very narrow. How narrow, depends on the developer of the application. If we allow a larger number of errors to occur then our domain allows more sources to be processed. But, if we want accuracy over the ability to process a larger domain, then we narrow the domain down to one source. Another way to increase accuracy is through the number of rules and the size of the word lists that are used. But using this technique has it’s own problems. These problems include the speed at which the program can process all of this information and the time involved in creating all the rules and finding all of the words that pertain to a certain domain.

Trade Study

	Organization
	MITRE Corp.
	Sheffield
	U.S. Cal.
	Inxight
	J.H.U.
	U of Mass.
	UV. Sussex
	DFKI
	U.

Groningen

	Product Name
	Alembic Workbench
	GATE
	Power Loom
	LinguistX
	fnTBL
	Badger IE
	ANLT
	PAGE
	Hdrug

	Knowledge Engineering
	Yes
	Yes
	Yes
	
	
	Yes
	
	Yes
	Yes

	Automatic Training
	Yes
	Yes
	No
	
	Yes
	Yes
	
	Yes
	

	Benchmarks itself
	Yes
	Yes
	No
	
	
	No
	No
	No
	Yes

	Price
	Free
	Free
	Free
	Demo
	Free
	Free
	Negotiable
	Negotiable
	Free

	Source Code Avail.
	Yes
	Yes
	Yes
	
	
	Yes
	
	Yes
	Yes

	Language Written in
	Tcl/Tk,C,Lisp,Perl
	Java
	Lisp, Java
	C++
	
	C, Perl, AWK, flex, bison
	
	C
	C

	Input/Output Formats
	Text,SGML/SGML
	Text, SGML, XML, HTML
	
	XML
	
	Text
	Text
	Text
	Text

	OS Compatibility
	Solaris, Unix/Linux, Windows (partial)
	Any
	Unix
	Solaris, Linux, Windows
	Unix
	Unix, Linux, Sun Sparc, Win9x/2000
	Unix, Linux
	Unix, Linux
	Linux, Windows

	GUI
	Yes
	Yes
	No
	No
	No
	No
	
	Yes
	Yes

Table 1: Trade Study of Products

I conducted a trade study (Table 1) of the products that are currently available for Information Extraction to determine which is best suited for our needs. The information source was the Internet. This limited applicability of the trade study but produced an adequate sample size.

Table 2: Best Two Products

	Organization
	MITRE Corp.
	Sheffield

	Product Name
	Alembic Workbench
	GATE

	Knowledge Engineering
	Yes
	Yes

	Automatic Training
	Yes
	Yes

	Benchmarks itself
	Yes
	Yes

	Price
	Free
	Free

	Source Code Avail.
	Yes
	Yes

	Language Written in
	Tcl/Tk,C,Lisp,Perl
	Java

	Input/Output Formats
	Text,SGML/SGML
	Text, SGML, XML, HTML

	OS Compatibility
	Solaris,Unix/Linux,Windows(partial)
	Any

	GUI
	Yes
	Yes

	Functionality

	Tokenizing
	Yes
	Yes

	Phrase Tagging
	Yes
	Yes

	POS Tagging
	Yes
	Yes

	Word Sense
	
	

	Co-Reference
	Yes
	Yes

	Morphologizer
	
	Yes

Once I completed the table, I proceeded to narrow the list based on functionality. This filtering produced two choices: GATE and Alembic Workbench. These two products look almost the same in the trade study, so I had to use both to determine which was best suited for our application. In the process of using these two applications I discovered that GATE is easier and more robust than Alembic Workbench. Alembic Workbench at first seemed to be able to do all that we were looking for. But after using it for a couple of days, it was obvious that Alembic Workbench wouldn’t work. Alembic Workbench did not automatically tag text; it was more geared toward assisting the user in tagging text. GATE on the other hand, takes a text and tags it automatically. Once I discovered that, GATE became the clear choice.

GATE: General Architecture for Text Engineering

GATE is a development environment for creating modules that parse text. Researchers at Sheffield distribute GATE with the basic modules: tokenizer, sentence splitter, part of speech tagger, name entity tagger, co-reference, and a lot of other modules. However, it does not come with a module for template filling. GATE executes by loading the included modules or by incorporating the user-created modules. When GATE is executed, the modules must be in a certain order for it to properly parse the text. The text is imported in almost any format, but internally the text is handled as an xml document. The tags are contained within the xml and when GATE is done processing, the user either displays the text with the tags highlighted (Figure 2) or saves the document in xml format. GATE also has a tool that allows the user to see how accurately it tagged a text. The tool takes an untagged text and the same text with tags from another source as the baseline and then tags the untagged text and compares it to the tagged text. Then GATE displays the difference. Finally, the user can modify the modules within GATE or the user-created modules, to increase the accuracy of the tagging.

[image: image3.wmf]
Figure 2: GATE with Highlighted Tags

Hedges and Template Filling

GATE’s ability to incorporate user-created modules is one of its prominent features. I have created a few modules. The first one is based on a concept of hedge words. Hedge words are the words listed in table 3 that people use within a text to emphasize their degree of belief in a particular fact. The idea is to make a word list of these hedge words and assign a value of belief to that word. Within a given text, hedge words give the program some idea of how the person felt when they wrote the document. The program assigns a value of belief to the document. To see if this was a viable way to determine the belief in a text, I took the mean value of the hedge words contained within that text. In testing this module we have concluded that one cannot judge the belief of a text solely on the words within the text. When people believe or disbelieve a text, they not only take into account the words but also the source, their own past experience with the topic of the text, and also their belief in the source. In other words, people put their knowledge of the world and emotions behind the belief in a given text.

Table 3: Word List of Hedges

	Absolutely
	1
	Actively
	0.78
	Actually
	0.76
	Admittedly
	0.89
	Almost
	0.83

	Apparently
	0.93
	Certainly
	1
	Characteristically
	0.88
	Already
	0.97
	Conceivably
	0.78

	Conceptually
	0.75
	Hardly
	0.23
	Hopefully
	0.43
	Clearly
	1
	Conceptually
	0.75

	Eventually
	0.89
	Inevitably
	0.67
	Might
	0.52
	Ideally
	0.5
	Impossible
	0

	Likely
	0.72
	Maybe
	0.54
	Perhaps
	0.4
	Normally
	0.67
	Occasionally
	0.51

	Possibly
	0.6
	Predictably
	0.7
	Presumably
	0.45
	Probably
	0.55
	Rarely
	0.23

	Supposedly
	0.64
	Theoretically
	0.48
	Unlikely
	0.03
	Strongly
	0.98
	
	

The other module that I created does template filling. This module is simplistic compared to the conceptualized version of template filling. The module works by use of a combination of word lists and rules. It also uses the existing name entity tags that GATE provides. The module runs after a set of the GATE modules. When the module runs, it first tries to get a more detailed description of the tagged words (Figure 2) from the GATE modules (i.e. address to, from or to IP address) through the use of rules. Then the module uses it’s own word list and rules to find other words that may fit a particular field. Once it is done tagging the words, the module goes through the text and pulls out the words in the order defined by the template and formats the output for the evidence form.

Without going into great detail about the evidence form, here is a brief overview. The evidence form (Figure 3) is a standardized input to a knowledge base. It has slots that accept values that answer a tailored set of Reporter’s Questions (who, what, where, when, why, and how). The evidence helps the knowledge base to explain conclusions drawn about the enemy. Our domain is intrusion detection analysis, so the evidence form was tailored to the characteristics of packets sent over the Internet.

[image: image4.wmf]
Figure 3: Evidence Form

Finalizing the Evidence Form with GATE

In testing GATE with the modules that I have created and the interaction with the evidence form, we decided that GATE needed to have supervision from an analyst. This front end to GATE (Figure 4) hides GATE from the user to make getting a tagged document a lot easier. Also it only suggests to the user what might best fit into a particular field, but the user still has to make the decision of whether the suggested information should be there or should there be more words to describe the field or some completely different answer. This front end also shows the text with the tags highlighted for the user to quickly scan the text and make quick decisions. This tool speeds up the analyst process of taking a text and converting it to the evidence form. It also automates the processing of GATE. After the analyst has filled out the fields, he sends the information to the evidence Form via message passing over TCP/IP, or has the option to save it as a file. We are looking at adding the ability for GATE to learn from operator, in which he corrects a tag GATE would remember that.

[image: image5.wmf]
Figure 4: Assisted Evidence Form

The Outcome of this Research

Porting the GATE code to our environment provided the opportunity to understand the functionality and limitations of the software package. We found that the Linux Version 1.5 was full-featured. Some code rewrite was required to compile GATE 1.5 under Linux. Our goal was to use the (XI classification) module to insert tagged words into a fixed template. We found that the method of the module would create a different template every time, based on the organization of the words within the text. From there we upgraded to Version 2.0 to create our own template-filling module. A significant result of our work with GATE was that we wrote one based on the XI classification module to interface with a fixed template.

 Testing the accuracy of information extraction was based on two types (Figure 5) of datasets: semi-structured reports and free text. Accuracy was computed by comparing the tags obtained by human consensus with the tags obtained by GATE. Within the random texts that we assessed, we sometimes found it difficult to obtain a single human interpretation. The inherent ambiguity in free text was a practical constraint on template filling. We expected the information extraction algorithm to do no better than the human consensus. Given the computer’s limited knowledge of the world and based on empirical rules and wordlist obtained by preprocessing a corpus, the augmentation with domain-specific wordlists and rules was required.

Figure 5. TCP Header File and Free Text

Examples of the accuracy obtained (Figure 6) with semi-structured reports and free text emphasize the importance of iteration. Initial accuracy is low, owing to the generality of the corpus used to pre-train the rules and wordlists. In addition, the required tags are geared to return specialized answers to fill the Reporter’s Questions Template; for example, IP Source Address. Consequently, rules and wordlists were augmented. For the case of semi-structured reports, the format of the header was used to an advantage. Thus, the tagging accuracy was improved by adding rules and wordlists to GATE until it reached almost 100% accuracy.

[image: image6.wmf]Insert Figure 6. Tagged Version of the TCP Header File

For the semi-structured report, the tailoring consisted of creating word lists and rules specific to the file structure of the Snort Intrusion Detection application. A set of header fields was created to increase the complexity of the file content by adding fields; (e.g., Name: John) to the report and completing the process by adding wordlists and rules to accurately tag the header fields. The free text case, which consisted of reports describing a network intrusion attack on a server, was more difficult to tailor to the domain. Trying to fit the word lists and rules to free text descriptions of intrusion attempts proved to be difficult; e.g., when an IP address was given, the code sought to tag it as “Source IP” or “Destination IP”, but the context did not make it possible. We mitigated this problem by generalizing the tag to “IP Address” and invoked analyst interaction to resolve the ambiguity (Source or Destination IP Address?). We call this analyst interaction functionality the Assisted Reporter’s Questions. It serves the dual purpose of resolving ambiguity and correcting the parser. We are investigating how GATE could accomplish remembering what was corrected to better understand the limitations of this machine learning functionality.

The preliminary result of the use of hedge words is that the computation of the mean appears to work well when the hedge words are few and uniform in tone. Statistically this corresponds to stating that the standard deviation of the numerical approximations is small. On the other hand, when the hedge words varied widely in tone, meaningful results were not obtained: using only the hedge words associated with the underlying hypothesis (which we obtain in another decision algorithm module in one of four ways: semantic distance, Autoclass Bayesian classifier, rule, or analyst interaction).

Integration of GATE with our General Purpose Decision Algorithms Testbed was accomplished by the Reporter’s Questions Template that provided evidence in support of a hypothesis in exactly the format required by the Protégé 2000 knowledge base. In the following section is a complete overview of the Assisted Reporter’s Questions form to allow for better integration with GATE.

User Interface for the Assisted RQ

This front end to GATE hides the execution of the underlying information extraction modules that tokenize sentences, tag parts of speech, and determine word meaning within a sentence, co-reference pronouns, and reason with hedge words. This simplifies getting a document tagged (Figure 7, Left) and converted to a Reporter’s Question form (Figure 7, Right). It suggests to the user what might best fit into a particular field, but the user may edit the suggested information by substituting words that better describe the field. This front end also shows the text with the tags highlighted for the user to quickly scan the text and make quick decisions. This tool speeds up the analyst process of taking a text and converting it to the Reporter’s Question form. It also automates the processing of GATE. After the analyst has validated the content, he sends the information in the Reporter’s Questions form via message passing over TCP/IP, or has the option to save it as a file.

[image: image7.wmf]

Figure 7. Assisted Evidence Form
To start, go to File, Process Text File and you will be presented with an open dialog box. The type of file can be of any text based format i.e. html, xml, text, ASCII… GATE will execute in the background and the main window will be unusable at that time. When GATE finishes, the tags generated for the text will appear in the left side in the tree depicted in Figure 7. The tab labeled Original Text can be selected to display the text that was just processed. Next, select a Mission. Currently there are two: Computer Network Defense and IW-DCI. Once you have made the mission selection, the tree will appear in the right hand side as shown in Figure 7. To move items from the Tagged Values list to the Reporter’s Questions list, click on the Move All button in the center of the screen. This will automatically match tagged text to the Reporter’s Questions from which the tags were derived. The mapping is typically one-to-one for semi-formatted reports.

 For free text, we have found cases where the text cannot be tagged to the specificity required by the Reporter’s Questions. For free text, manual mapping from tagged text to Reporter’s Questions augments the Move All command (See the blue-lined example in Figure 7). To manually map, select a item in the Tagged list and then select a field item in the Reporter’s Questions list, then click the Move (button. This will move that value to the Reporter’s Questions (We are likely to simplify this to a “drag” from Tagged to Reporter’s Questions).

 To add new information, select the item in the Reporter’s Questions tree and click the New Value button. When a dialog box appears with an input field, type the desired value and click OK. To edit a field, double-click on it.

To save or send the filled in Reporter’s Questions tree, first go to File, Export R.Q. This will display an Export To dialog box. Select either Local Host or Remote Host to send the information to the location of the Test bed. By default the Remote Host is set to the Local Host.

To change the address of the Remote Host, select Edit, Configure Remote Host. A dialog should appear with the current address of the Remote Host. Enter the new value and click OK.

You may also save the file to the disk by checking the Save to File in the Export to R.Q. dialog in case the host is unavailable. Once you have saved a file, all that is needed to open that file is to go to File, Open and select the .tags file of the same name as the text file that was processed. This will automatically load the tags and the original text along with the filled in Reporter’s Questions if they exist.

Conclusion

The work described in this paper shows that GATE is a powerful tool in the realm of Information Extraction. GATE and its associated library of modules, are capable of demonstrating and teaching the concepts of IE while giving the user the ability to create their own modules, as I have done. The modules that I have created extract the needed information and put it into the evidence form. These modules, being the Hedger and Template Filling modules, use a combination of rules and word lists to accomplish this task. Although there are programs out there along with my module for template filling, the accuracy is still roughly 60%. That number is not high enough to be used to automatically fill a template but not low enough that it couldn’t be used to assist an analyst at filling the evidence form. This was the reason for creating an Assisted Evidence form for analysts. This form displays the possible words that match a given field and puts the decision making in the hands of a human while allowing the computer to learn from this interaction.

The integrated package (Figure 8) illustrates how everything works together. Text is input into GATE, which tags the content associated with the evidence form. The tagged words are automatically input into the Reporter’s Questions Template and provided to the analyst for review. The resulting content can be entered into the knowledge base.

[image: image8.wmf]
Figure 8: An Overview

References:

1. University of Sheffield. Developing Language Processing components with GATE (a users Guide), 2001-2002.

2. Fuchun Peng. Models for Information Extraction, 2000.

3. Douglas E. Appelt and David J. Israel. Introduction to Information Extraction Technology, 1999. Artificial Intelligence Center, SRI International.

4. R. Gaizauskas, K. Humphreys. XI: A Simple Prolog-based Language for Cross-Classification and Inheritance. 1996.

Jeffrey A. McCartney is a technical programmer for the Information Analysis and Planning IR & D. He is also pursuing a BS degree in Computer Science at the Colorado Technical University in Colorado Springs, Colorado with a strong background in mathematics, primarily in statistics. His main area of work is in Information Extraction technologies.

[**] NETBIOS NT NULL session [**]

01/26-00:17:02.563991 129.193.111.1:1603 -> 129.193.165.175:139

TCP TTL:122 TOS:0x0 ID:28810 IpLen:20 DgmLen:226 DF

AP Seq: 0x131E263E Ack: 0xBA849FC3 Win: 0x21C5 TcpLen: 20

=+

Quoting from the � HYPERLINK "http://www.ciac.org/ciac/bulletins/k-069.shtml" \t "_blank" �CIAC advisory number K-069�, rpc.statd attack is described as follows: "The rpc.statd passes user-supplied data and without validation of this data, a user may supply machine code to be executed with the privileges of the rpc.statd process". This vulnerability allows the intruder to gain access to the vulnerable host with root level access (e.g. inset the line "9704 stream tcp nowait root /bin/sh sh -i" to the inetd.conf file and restart the inetd process).

To understand what this cracker did, I first ran Ethereal on the snort log file and filtered the display to show only the traffic to and from the Linux host in question here (i.e. 172.16.1.108). The first two entries were someone scanning for rpc-portmaper service and lpr service, but it appeared the Linux host were not yet in production (since no reply were seen from the Linux host itself). At 12:34:07, the third entry took place. But this was simply the Linux host performing a WHOIS query on shell-station.com.

4

_1094380008.bin

_1094380199.bin

_1094380380.bin

_1094380426.bin

_1094380045.bin

_1094379845.bin

_1094379937.bin

_1094379777.bin

