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The environment within the Department of Defense (DoD) is changing. The advent of National and Theater Missile Defense signals a shift from an "offense only" policy for deterrence to a weapons arsenal containing strategic and theater offensive and defensive systems. Wide-ranging mission planning and execution implications for military commanders are apparent. There is the need, therefore, to identify the benefits (military utility) associated with semi-automated help in planning in strategic and tactical offensive and defensive systems in future operational centers.

The DoD is also downsizing, Mission planning, execution, and assessment are being handled by smaller crews which are subjected to shorter timelines and overwhelming amounts of data.  The diversity of missions including both offensive and defensive options that must be planned, and the complexity of executing these missions, is increasing. For these reasons, the mission commander needs semi-automated help in developing plans, monitoring execution as the mission progresses, and updating the plans based on continuous combat assessment.

Offense/Defense Integration is an applied research project formed to investigate the implications of strategic, operational, and tactical offensive and defensive systems on the command and control of the battlefield. One focus of this research project has been the development of a planning aid for optimizing detailed plans. We used a genetic algorithm to choose combinations of response options (actions) and targets that best satisfied an operator specified goal. Results to date are encouraging: a search space of 10 trillion possible combinations was efficiently searched to produce an optimal solution. Further work is planned to solve a broader class of realistic military planning problems.
Introduction
The objective of this study was twofold: to investigate the implications of strategic, theater, and tactical offensive and defensive systems on the command and control of the battlefield, and to define a spectrum of operational concepts for command and control centers to integrate offensive and defensive systems. 

Sub-objectives were: 1) Rapid planning and plan updating – the focus of this paper; 2) developing and interoperating simulations of these future command and control centers in a virtual battlespace; 3) exploring command and control requirements associated with integration of offensive and defensive systems; 4) leveraging existing simulations and decision algorithms to establish a wargaming framework for collaborative USSPACECOM and USSTRATCOM command and control; and 5) demonstrating a prototype federation among offensive and defensive simulations that features real-time, operator-in-the-loop command and control.

A major goal of this effort was to produce a fast, flexible, semi-automated decision toolkit that provides aids for mission assessment, planning, and execution monitoring by using the latest technological innovations in the fields of system analysis, software engineering, and artificial intelligence. This paper discusses the underlying technology of a prototype implementation of a weapon/target pairing algorithm using genetic algorithms and its integration into this decision toolkit. 

Background
Mission planning, execution, and assessment are being handled by smaller crews who are subjected to shorter timelines and overwhelming amounts of data.  The diversity of missions that must be planned -- for example, offense/defense integration (ODI), Computer Network Warfare (CNW) and Time Critical Targeting (TCT) -- and the complexity of executing these missions, is increasing. In addition, the environment in which the missions take place is increasingly dynamic, thereby causing the objectives to change as the plan unfolds and the original plan to fail.

Because of the complexity and size of the planning space and the number of possible combinations of factors and constraints that must be considered during the planning phase, manual planning methods and most current automated methods are narrowly focused, inflexible, time consuming, and non-scalable. As additional options or constraints are added, the plan complexity increases several-fold and the time necessary to develop the plan increases accordingly.

Fortunately, new technologies and algorithms are becoming available to overcome many of the impediments described above. Unfortunately, few of these technologies have been implemented in systems for operational users. These semi-automated, automated, and autonomous decision support tools are not only needed for reducing the decision making time, they must also be included in operational planning systems with which the decision maker has confidence and is familiar. Hence, the effort of this study is directed toward command and control planning aids with eventual incorporation of these proven planning support tools into operational environments.

The Joint Operations Planning and Execution System (JOPES) process, shown in Figure 1, defines common decision processes and provides broad guidance for the conduct of missions in which joint forces are involved and a basis from which to derive sets of military decisions. Specifically, the process includes detailed plan development, monitoring, and updating. It is toward this goal that the algorithms described here are aimed. Also shown is where the planning tool described here fits in the JOPES process.
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We should, at this point, define what a detailed plan means in the context of this study. A detailed plan is defined as a set of 1-to-n (Response Option, Target) pairs that produce a desired effect, where Response Option (RO) is an action taken against a target. In order to limit the complexity and size of the data used in this study, we limited the number of ROs to fourteen and the number of targets to fifty. The implementation of the decision aid, however, is limited only by the amount of memory and computing power available. 
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Genetic Algorithm Basics

Genetic Algorithms (GAs) are patterned after the processes underlying evolution of biological life forms - shaping a population of individuals through the survival of its most fit members. Three distinct analysis and definition steps must be taken to solve a problem using genetic algorithms1:

· Define the objective function: a fitness function that judges which individuals are the “best” life forms – that is, most appropriate for the eventual solution of the problem. These individuals are favored in survival and reproduction, thereby shaping the next generation of potential solutions.

· Define the genetic operators: mating and mutation algorithms, analogous to the sexual activity of biological life forms, produce a new generation of individuals that recombine features of their parents.

· Define a representation: the individual potential solutions of the problem domain are encoded into representations that support the necessary variation and selection operations.

Given the objective function, the genetic operators, and a representation, the process to evolve a generation of individuals from the original population as the solution for the problem is:

1. Randomly generate many individuals (possible solutions), and calculate the result each individual produces. This entire "population" of individuals is ranked from best to worst (using an “objective function” to be described later).

2. Select good individuals and swap their variables (genes) using crossover and mutation to produce "offspring". If offspring do not produce a good result, two more parents are selected.

3. If the offspring individual is good, re-inserted it into the population.

To use a genetic algorithm to solve our optimization problem, we expressed a single solution to the problem in a single data structure. Defining the appropriate representation is the single most difficult (and important) aspect of using GAs and is still considered an art, not a science. The method chosen must be able to articulate any solution to the problem, but cannot represent infeasible solutions.

For the implementation described here, we used two arrays of integer numbers (one array composed of the integers 0-13 and the other composed of the integers 0-49) representing the RO and the target, the combination of which (taken “n” at a time) defined the makeup of each individual of the population.

After evaluating each candidate, the algorithm selects pairs for recombination using what are referred to as genetic operators to produce new solutions that combine components of their parents. There are a number of these operators, but the two most common are crossover and mutation, both of which are used in the implementation described here.

Crossover takes two candidate solutions and divides them, swapping components to produce two new offspring that have genes that are swapped (crossed over) from their parents.

Mutation takes a single parent and randomly changes some aspect (gene) of it to create a new offspring. Mutation is important in that the initial population may not contain some essential component of an optimal solution. Mutation is needed to introduce this component in later populations. This could suggest solutions that were not considered nor envisioned by the decision maker, and yet be better or more cost effective than those suggested by non-GA based methods limited to the initial problem space.

Most optimization methods use what are referred to as "hill climbing" methods. They start with an initial guess and proceed to find the nearest maximum (or minimum) solution (imagine starting at a point along a curve and moving to the left or right until you reach a peak or trough). Hill climbing will always find the best answer if the function being explored is smooth and the initial selections place you near the optimal solution (either of which rarely happens). If either condition is not met, hill climbing can end up at a local solution rather than a global solution.

A major advantage of a genetic algorithm approach is that it is a “stochastic directed searching” technique that does not get stuck at local solutions, but instead looks at the entire range of possible solutions. For complex or highly non-linear problems (as many real-world problems are), a GA approach is usually the best choice.

Another advantage of genetic algorithms is the great flexibility of the objective function that may be used with them. This allows the use of methods such as look-up tables and if-then statements that allow the function to be discontinuous.

Approach
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Since the objective of this study was to develop a decision tool using GAs, as opposed to implementing the underlying algorithms, we wanted to use an available genetic algorithm implementation. After doing a trade study that showed that the GAlib2 product developed by Matthew Wall at MIT provided the features and capabilities that best fit our needs, we then determined the best formulation of the problem. This was followed by a detailed design phase during which we defined the input parameters, data structures, and progression of test problems. Finally, we implemented the algorithm and executed a series of test problems in the subject domain. The approach taken for this project is summarized in Figure 2.
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As outlined above, an important prerequisite to the plan optimization process was determining the objective function (i.e., the metric to optimize) and understanding how to optimize that metric. We quantified the potential for ODI to provide a “force multiplier” based on a new performance metric - the Ratio of Damage Expectancies (rDE). This metric was derived from the Damage Expectancy (DE) of Blue-on-Red and the Damage Expectancy of Red-on-Blue (throughout this paper, “Blue” means friendly forces and “Red” means enemy forces). DE is a concept obtained from the strategic deterrence community and modified for our needs. It is palatable to the National Missile Defense (NMD) community because it naturally includes the concept of threat “leakage”: Red-on-Blue DE is proportional to leakage. Further, pre-launch destruction of Blue resources, a factor in Blue-on-Red DE, is also directly proportional to leakage.

Damage Expectancy is composed of three probabilistic factors: Probability of Pre-launch survivability (SV), Probability of Arrival (AR), and Probability of Damage (DM). The rDE was determined as outlined below.

a = SVbr = Pre-launch survivability (Blue on Red)

d = SVrb = Pre-launch survivability (Red on Blue)

b = ARbr = Probability of Arrival (Blue on Red)

e = ARrb = Probability of Arrival (Red on Blue)

c = DMbr = Probability of Damage (Blue on Red)

f = DMrb = Probability of Damage (Red on Blue)
rDE = (a ( b ( c ) / (d ( e ( f)
Default values for a, b, c, d, e, and f were available from a database. These factors were based on heuristics, past experience, best estimates, and system analysis. We used data mining techniques to assure that the approach used to estimate the default values were consistent and complete. The tool we used was a public domain tool called WEKA that uses a rule induction tree algorithm (Quinlan’s C4.5 Classifier) to explicitly identify and show outliers, highlight the hierarchical structure of the data, portray relationships, and identify inconsistencies, omissions, and conflicts in the data.

Having defined the objective function, we tackled the problem of formulating a suitable representation and solution strategy - given the desired number of actions (“n”) and a desired Ratio of Damage Expectancy (rDE), we wish to determine a detailed plan (which consists of “n” pairings of ROs and targets) that most closely matches the desired rDE. The solution is obtained by searching through all possible combinations of pairs. Due to the size of the search space, an exhaustive search is out of the question, suggesting that the use of a genetic algorithm technique would be the best approach.

The instantiation of the representation of the problem consisted of using arrays of integers to represent both the RO and the target. This allowed us to use the integers returned by the GA as indexes into tables of data associated with the ROs and the targets. Each RO consisted of the following fields:

1) Name – Assigned by user for the user’s reference

2) Weapon – Type of weapon used (Conventional or Nuclear)

3) Arena – Area in which action takes place (strategic or theater)

4) Type – Type of action (Preempt, Defend, Deny, Destroy, Retaliate, etc.)

5) Factors – Six RO factors making up the rDE

6) rDE – Pre-calculated rDE before constraints

Another planning tool included in the prototyping testbed is the Target Assessment tool which allows the decision maker to examine the current attributes of targets contained in a database for selection of the most appropriate targets for use in the target part of the weapon/target pairings. Some of the attributes important for this study are:
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Each target consisted of the following fields:

1) Name – Assigned by user for the user’s reference

2) Locale – Area/City in which target is located

3) Location – Latitude/Longitude of target

4) Type – Classification of target (Airbase, Sub port, NBC facility, etc.)

5) Value – Importance of target to the mission

6) Hardness – Hardness of target

7) Mobility – Mobile or Fixed target

In genetic algorithm terms, the {RO, target} pair is referred to as a genome and in our implementation was composed of two genes – the RO and the target.

The solution strategy is to use a genetic algorithm that starts from an initial population randomly generated by GAlib. Then, using crossover and mutation operators, evolve new genomes for each individual in the population consisting of new combinations of genes.  As each new population is generated, a user-supplied “objective” function (as described above) is used to determine which individuals survive and which are dropped for the next generation.

Our initial implementation imposed two constraints on the objective function  - hardness factor in DMbr was a function of weapon type and SVrb was a function of mobility and hardness. If more constraints are added or the number of ROs and/or targets increased, the number of possible combinations and the complexity of calculating rDE increases exponentially – certainly beyond the capability of finding the optimal solution manually, or even with automated exhaustive search techniques. Moreover, due to the dependence between the probabilistic factors in the ROs and the weightings of the targets, a simple multiplicative combination of the probabilities is not sufficient to calculate rDE. A much more sophisticated approach was needed, resulting in the combination rule described here.

Combinatoric mathematics can be used to determine the size of the problem space. The number of combinations of ‘k’ things, taken ‘n’ at a time, read "k choose n", is: 

         k
             



Some examples of  # of possible solutions:
        ( ) = C(k,n) =  k! / (n! ( (k-n)!)

k = 14(50    n = 3    C(k,n) = 56,921,900

         n





k = 14(50    n = 4    C(k,n) = 9,918,641,075

For this problem, ‘k’ is the product of the number of ROs and the number of targets, and ‘n’ is the number of desired actions (all of which are user selectable).

The objective function calculates rDE for “n” RO/target pairs according to the combination rule derived specifically for this application. The rDE is returned to the GA and when it matches the criteria set by the initialization parameters, the “optimal” solution has been found.
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Combination Rule Algorithm:

For each of the 6 factors (e.g., SVbr)

Find all actions on same target instance

   - If not dependent, use OR rule (see below) 

   - If dependent, use AND rule (see below)

Find all actions on different target instances

   - Look up the value of each target (See Target Values in box)

   - Normalize so the sum of the values is unity (weights Wi)

   - Apportion factors according to weights (See Weights in box)
The formulation is meant to allow:

· Asymmetric threats 

· Probability of pre-launch survivability (SV) of offensive asset

· Probability of arrival (AR) of weapon to the target

· Probability of damage (DM) to the target

· Combination of actions (same action against multiple targets or multiple actions against same target):

· Must be careful when combining different populations

· For populations of differing worth: P = P1(W1 +  P2(W2  +  ...

· Probability OR rule for independent events P = {1 - (1 - P1)((1 - P2) … } 

· Probability AND rule for dependent events P =  {P1 ( P2 ( …  }
Results

An important aspect of the project was providing a visual method for determining whether the system is behaving as predicted or desired. To this end, we developed a graphical display (Figure 3) showing the results of a GA optimization during a detailed planning session. Targets are shown on the X-axis and ROs are shown on the Y-axis. The figure shows a detailed plan composed of three {RO, target} pairs. The lines connect the ‘n’ pairs that comprise the plan (three pairs in this case, resulting in two lines).

The population size was 30 individuals and the optimal solution was found at generation 3 with a best score of 0.14 (ie., the desired rDE is very close to the calculated rDE for that generation).

The ‘Statistics View’ area shows the values of the genetic algorithm-specific parameters as the generations are processed and is useful for determining the performance of the algorithm.

The ‘Response Option View’ area shows the {RO, target} pairs making up the detailed plan.


The diversity of the detailed plan is easily seen from the lines connecting the RO/target pairs. A horizontal line indicates that the same action is taken against multiple targets, a vertical line indicates that multiple actions are taken against the same target, and a zigzag line indicates that different actions are taken against different targets.

Table A lists the example Response Options and their six factors used to determine the rDE for the demonstration test case illustrated above.

Table A – Response Options

	Action
	SVbr
	ARbr
	DMbr
	SVrb
	ARrb
	DMrb
	rDE

	Strategic Defend (C)
	0.8
	0.9
	0.7
	1.0
	0.1
	0.7
	7.2

	Tactical Defend (C)
	0.8
	0.9
	0.8
	1.0
	0.1
	0.9
	6.4

	Strategic Preempt (N)
	1.0
	0.9
	0.8
	0.2
	0.9
	0.7
	5.7

	Tactical Preempt (N)
	1.0
	0.9
	0.9
	0.1
	0.9
	0.7
	12.9

	Strategic Preempt (C)
	1.0
	0.9
	0.3
	0.5
	0.9
	0.7
	0.9

	Tactical Preempt (C)
	1.0
	0.9
	0.7
	0.4
	0.9
	0.7
	2.5

	Strategic Destroy (N)
	0.6
	0.8
	0.7
	0.4
	0.9
	0.7
	1.4

	Tactical Destroy (N)
	0.6
	0.9
	0.8
	0.2
	0.9
	0.7
	3.3

	Strategic Destroy (C)
	0.6
	0.8
	0.7
	0.8
	0.9
	0.7
	0.7

	Tactical Destroy (C)
	0.6
	0.9
	0.8
	0.6
	0.9
	0.7
	1.1

	Strategic Retaliate (N)
	0.5
	0.8
	0.9
	1.0
	0.9
	0.7
	0.6

	Tactical Retaliate (N)
	0.5
	0.9
	0.7
	1.0
	0.9
	0.7
	0.5

	Strategic Deny (E)
	0.9
	0.9
	0.4
	0.6
	0.9
	0.7
	0.7

	Tactical Deny (E)
	0.9
	0.9
	0.5
	0.4
	0.9
	0.7
	1.6


Following is the definition of terms as used in the table above:

· ‘Strategic’ means pertaining to CONUS, tactical means theater

· ‘Preempt’ means planned for before the enemy strikes

· ‘Destroy’ means planned for the trans-attack phase

· ‘Retaliate’ means after the enemy strikes

· ‘Deny’ means indirectly achieving an objective using information operations
· (C) means conventional, (N) means nuclear, and (E) means infrastructure
Another interesting aspect of this project was the analysis of the effect of the three factors in determining Damage Expectancy. Of the three, Probability of Damage (DM) was, by far, the dominant factor. Of the items determining DM, target hardness had the greatest impact. Figure 4 shows values of DM for nuclear weapons against surface targets for various structure types. Target hardness, shown on the X-axis, varies by orders of magnitude. This results in rDEs that differ by orders of magnitude - from near zero to tens-of-thousands. Our analysis indicates that clusters of rDE correspond to specific Courses-of-Action. At first glance, it would appear that high rDEs are the best approach - but cost, political factors, and asset availability severely limit the achievable DM.


One of the overall objectives of this effort was to implement and demonstrate a prototype decision tools testbed that allows us to explore the use of a variety of planning tools in the context of command and control systems. This paper has described one (of several) of the tools already implemented.

As stated earlier, to gain the most benefit from the advantages that semi-automated planning tools can provide, they must fit into an existing operating environment and application. As illustrated in Figure 5, we demonstrated that we could integrate the GA-based planner into a pre-existing application – it receives broad planning objectives from the Course-of-Action Planner and the Target Assessment applications and provides an optimum detailed plan to the decision maker.




Future Plans
Key challenges facing decision algorithm designers are the issues of stability, scalability, and performance. In the longer term, empirical investigations need to be carried out to establish suitable minimum levels of performance and scalability. Stress testing and exception condition testing must be performed in order to determine stability.

We plan for the near term to enhance the implementation to provide additional options and capabilities:

1) Find the most efficient parameter settings and benchmark our implementation

2) Find one or more response options that produce a specified rDE

3) Vary parameters to maximize diversity in 2) above

4) Add exceptions to target value and repeat 2) above

5) Apply temporal constraints: 
Tpreempt < Tdefend  < Tretaliate, Tpreempt < Tdestroy < Tretaliate, Tpreepmt < Tdeny

6) Apply weapon constraints (E.g., firing doctrine, fratricide, etc.)

7) Co-evolve multiple mission populations using parallel implementation

8) Customize crossover, mutation, representation, and objective function
Summary
Our research has resulted in the development of an integration testbed that is used to study issues related to combined offensive/defensive mission planning using emerging technologies and algorithms in the computer science community. Specifically, we used this testbed to prototype and demonstrate the use of genetic algorithms to optimize detailed planning. More generally, we have used it to develop domain expertise and experience in the area of joint offense/defense mission planning, which will be important in the years ahead in helping the DoD to meet its command and control needs.

Another area in which GA processes would fit extremely well is in the aerospace operations area of Time Critical Targeting (TCT).  A TCT plan consists of pairing Red targets with Blue assets (usually aircraft). Each of the multiple targets and multiple available assets has numerous parameters and constraints that affect which target should be paired with which asset. The time constraint in determining the plan is also extremely short, making it almost impossible to determine the “best” plan in the time available either manually or using automatic exhaustive search techniques given realistic numbers of TCTs and available assets. Although many weapon/target pairing algorithms exist, the beauty of the genetic algorithm is that it avoids local extrema and allows flexible specification of the objective function. 

Yet another area of applicability would be mission planning for multiple assets against targets such as fighter aircraft and a surveillance platform – specifically, UAV mission planning.

A new area of potential use of GA-based detailed planning is Space Control, which deals with how to protect space assets and avoid what is referred to as a "Pearl Harbor in Space". This mission will clearly involve a tight coupling of Intelligence, Surveillance, and Reconnaissance (ISR) mission accomplishment actions and defensive actions to protect the ISR space assets. Depending upon the threats and the defense concepts, this could lead to mission planning considerations for other systems dependent upon these space assets - including National Missile Defense and Theater Missile Defense.
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Figure 5 – Testbed Integration





Figure 3 – Detailed Plan Display
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